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ABSTRACT

The impact of complexity on software quality and costs

is examined. Historic and current issues relating to com-

plexity in the software development and software cost esti-

mation processes are reviewed. Select complexity models

and metrics are described and briefly analyzed. Finally,

an argument is presented in support of McCabe's Directed

Graph Model as a useful software management tool in control-

ling complexity, formulating a test strategy and allocating

resources.
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I. INTRODUCTION

Total procurement costs of large scale computer systems

are conventionally divided into costs associated with pro-

duction of hardware components (computers and peripheral

equipment) and costs associated with software development

(program design, coding, test, maintenance and documenta-

tion). While hardware costs dominated in early computer

models, the combined effects of improved cost-reducing tech-

nology in the production of hardware and marked rises in the

costs of labor to develop programs have resulted in a dra-

matic reversal in this situation today. [1, 21 Indeed, if

these trends continue, software costs will converge to approxi-

mately 90% of total computer procurement costs in the mid

1980's (see Figure 1). [31

(3)
FIGURE 1 HARDWARE/SOFTWARE COST TRENDS
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From a management perspective, the steady incremental

reduction .n hardware unit costs has been a concrete mani-

festation of technological gains and increased productivity.

- I Although management problems have arisen, they have been the

livable difficulties of a high growth industry meeting each

new challenge with multiple technical solutions, thereby

constraining managers only by their abilities to adapt to

and harness new opportunities.

Conversely, the rising costs of software are directly

indicative of a critical mismatch between complex needs and

limited technical abilities. Trends and pressures leading

to this situation have existed from the beginning attempts

to apply general purpose computers to progressively more

complex and larger problems of society. As awareness of a

large number of system development failures and near failures

increased in the recent past (illustrated by cost overruns,

schedule slippages and performance degradations), a growing

appreciation of the scope of unsolved technical and produc-

tivity problems began to emerge.

This awareness was well summarized at the 1973 "Symposium

on the High Cost of Software" in a statement that continues

to apply today: "Progress in software technology has been

very slow, but demands for software production are increasing

in volume and complexity. Such demands have clearly out-

stripped the technology, with very costly results. Produc-

tion of new software products suffers great overruns in cost

and delivery time, and quality is often deficient in

12



correctness, modifiability and transferability. The mainte-

nance costs of old software products may be an order of

magnitude larger than production costs, due to poor original

design and production." [41

In order to close the gap between existing software

technology and production demands, a number of noteworthy

1.1 programming/management techniques have been developed and

implemented with varying success. These developments include

computer aided specification generation, top-down design,

structured programming, chief programmer team, egoless pro-

gramming and program walkthrus.

Also imbedded in the historic problems of developing

large scale software has been an inability to produce accurate

project cost and schedule estimates and a corresponding mana-

gerial failing to correctly assess risk and critically evalu-

ate estimates and associated underlying assumptions presented

by subordinate software estimating groups. The cumulative

project costs of developing and maintaining large scale sys-

tem software are determined by a myriad of interrelated vari-

ables including the quality and stability of original design

specifications, the relative difficulty of the technical

problems involved, the productivity of the programming group

available, and the traditional project management skills of

efficient resource direction and utilization. The relative

distribution of available resources over production phases

varies with each project. However, studies have indicated

13



the average % resource requirement distributions summarized

in Table I. [2]

TABLE I

Percentage Distribution of Resource Utilization

DEVELOPMENT PHASE* ANALYSIS & PROGRAM TEST &
DESIGN WRITING INTEGRATION

PROJECT TYPE

Military Command & 35 15 50
Control System

Space Oriented System 35 20 45

IBM 360 Operating 35 15 50
System

*NOTE: This table ignores maintenance expenses incurred
after system deployment.

The occurrence of the proportionately high cost factor in the

test and integration phase as indicated in this summary has

come as an unpleasant surprise to many project managers and

to those supplying project funds. The chronic underestimating

of these costs is most directly attributable to a pervasive

lack of appreciation for the extent of required managerial

involvement and severity of potential pitfalls associated

with the iterative process of software quality assurance.

When a manager underestimates the dollar and time requirements

of the test phase, he often exacerbates them by embarking on

an inadequate initial effort which is essentially wasted.

System quality must be a focal management concern throughout

a project. Costs to recover during testing for earlier man-

agement control mistakes are normally prohibitive. Further,
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indirect costs, which do not appear as part of the project,

often result from pressured attempts to shortcut the test

phase. Such costs include late deliveries and resulting

slipped schedules, delivered system degradations and associ-

ated spiraling life-cycle support costs as well as difficul-

ties in funding follow-on projects due to mistrust of

presented estimates and fear of further overruns.

Recently, significant efforts (referenced later) to im-

prove software management performance have centered on

recognition of software complexity as a quality and cost

determinant. If complexity can be measured, controlled

(e.g., by threshold) and shown to reliably predict the

probable effort required for error detection and correction,

an important tool will be available in the effort to under-

stand and manage large scale software development costs.

This thesis is aimed at investigating the impact of com-

plexity on software quality and costs and the potential

ability of management to exploit this impact. In conducting

the investigation, the cornerstone work by McCabe in apply-

ing the cyclomatic number from directed graph theory as a

measurement proxy for software structural complexity and the

supportive experimental work at the Naval Postgraduate School

supervised by Schneidewind were particularly useful. Further,

field trips were made to three software production facilities

(TRW, Redondo Beach, Ca.; Hughes Aircraft Co., Fullerton, Ca,;

U. S. Navy's Fleet Combat Direction System Support Activity

(FCDSSA), San Diego, Ca.). These field trips served to

15



determine current cost estimating and resource allocation

procedures and to validate by interview the existing confi-

dence levels in complexity or other cost predictors by those

currently involved in this effort. Results of these trips

are cited as appropriate. While user/customer issues are

recognized where relevant, the perspective of the develop-

ment agency is emphasized.

Chapter II discusses issues concerning the development

and control of large scale software. Chapter III summarizes

some select aspects of complexity and complexity metrics

relative to software. Chapter IV reviews a recent experiment

relevant to the application of complexity measurement theory

to management practices. Chapter V describes the resource

estimation problem and suggests a management approach to

resource allocation utilizing the cyclomatic number metric

as a guideline. Finally, Chapter VI offers a summary and

conclusions.
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II. SOFTWARE DEVELOPMENT AND CONTROL

A. NATURE OF SOFTWARE

Software includes both the conceptual solution to a pro-

posed problem and the documentation required to translate

this solution into a workable computer program. Its nature

is marked by a lack of measurable physical characteristics.

j The management of software development historically suffered

because essential similarities and differences between soft-

ware development and traditional hardware design and produc-

tion were not well understood. Management understanding of

these comparisons is essential to controlling software quality.

The most important of these similarities and differences are

listed below: [5, 61

- While hardware engineers utilize a sequence of develop-

ment prototypes enroute to the production model, software

projects often begin with a concept that the first version

developed will be the delivered product. This concept is

naturally reflected in personnel, monetary and calendar-time

estimates and expectations. History has indicated a definite

need for iteration in software development analogous to the

hardware development model.

- The institutionalized sequence of hardware production

provides natural control points for management review and

design freezes. Software development has no such natural

points and often suffers from changes throughout. Design

17



freezes are essential for ordered software development and

must be arbitrarily imposed by management.

- Hardware engineers expect designs to be fully tested

by well understood procedures and customarily prepare test

plans. Although pressures to formally test software are now

substantial, testing techniques are still at an innovative

*stage and much quality evaluation remains highly dependent

upon individual prograners.

- Hardware is essentially composed of standard parts with

stable performance characteristics. Software sub-routines

are often new, innovative and not fully understood.

. Hardware reliability is related to the passage of time

much differently than software reliability. With hardware,

"An accumulation of stresses is reached which causes a compo-

nent to fail." [6] Conversely, a software error exists due

to programmer activity or inadequate specification. "The

amount of time (labor and machine) involved in error detection

and the probability of error detection are a function of test

time, type of test, and choice of test data." (6] Barring

major modifications, software boasts an indefinite life,

continuing to improve (decreasing error rate) with mounting

testing and use.

- A software module with a detected error cannot be pulled

off-line, replaced with a working unit and repaired. It must

be repaired in order to fix the system. (The idea of fault

tolerant programming incorporating redundant modules has been

used in real time applications requiring high-reliability.)

18



- Correction of a software fault generally results in a

new software configuration.

- In the process of making additional copies of software,

no imperfections or variations are introduced (save for a

class of easily checked copying errors).

B. SOFTWARE QUALITY

The quality of software has many aspects. Each aspect

can become overriding in importance, depending upon the

program application and the user's intention. During develop-

ment or design change implementation, ease of revising (and

verifying) is important. During deployment, ease of oper-

ating is paramount. Similarly, if a need develops to adapt

the software to another system (hardware, software or both),

ease of transition will be an important attribute. Table II

(7] lists 11 software quality factors within this framework.

Although Table II does not necessarily provide a complete

list of quality factors, most additional terms or criteria

of software quality can be related to those described.

19



TABLE II

Software Quality Factors

QUALITY CATEGORY QUALITY FACTOR - DEFINITION

I REVISION (1) Ma intainability - Ease of locating&

correcting errors

(2) Flexibility - Ease of modifying
program

(3) Testability - Ease'of adequately
testing (includes
traceability: ease
of linking require-
ments to design and
code)

II OPERATION (4) Correctness - Extent to which
user requirements
are met

(5) Reliability - Extent of accurate
and consistent
operation

(6) Efficiency - Relative optimal use
of computing resources
and code

(7) Integrity - Relative ability to
control unauthorized
data access

(8) Usability - Ease of learning,
operating, preparing
input and inter-
preting output

III TRANSITION (9) Portability - Ease of transfer from
one hardware configu-
ration or system
software environment
to another

(10) Reusability - Ease of applying to
other programs
(relative to packaging
and scope)

(11) Interoperability - Ease of interfacing
with another system(s).

20
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The dominant aspect in all software quality factors is pro-

gram complexity. In general, as program structures become

more complex, the probability increases of encountering diffi-

culty in revision, operation and transition. [1, 2, 8]

Accordingly, controlling complexity is a key concern of manage-

ment in project development.

C. DEVELOPMENT CYCLE

In order to accurately estimate and/or effectively control

a large scale software project, the development cycle must be

understood. Although different authors and managers vary in

some detail or nomenclature, the industry's successes and

failures have distilled a generally accepted progression of

activities necessary to produce a large scale computer program.

The major phases of interest are comprised of the following:

- Analysis

- planning
- requirements definition
- specification

- Design

- Coding

- Integration and Testing

- Life Cycle Support/Maintenance

Figure 2 (substantially from [51)depicts this development

cycle in chronological detail. It is important to note the

iterative nature of this cycle, represented in Figure 2 by

connecting arrows. Often events in one phase, such as testing,

stimulate reworking of problems in a previous phase, such as

coding or even design. Additionally, it is common for sig-

nificant phase overlaps to occur at certain stages (e. g.
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conducting testing prior to completion of all coding). As

mentioned earlier, freezing design at some point is an essen-

tial function of management if the project is to be completed

on schedule, and at planned-for cost.

1. Analysis (planning, requir'ements definition,

specification)

The initial or analysis phase of a project can be

extended over a considerable time period and include several

key activities. The user/customer generates requirements

during this stage and communicates them to (potential)

project engineers. This is an iterative process and is fre-

quently stimulated by engineers (or marketeers) describing

what is possible to users. Two issues, validity of user

need and feasibility of solution, must be resolved prior to

promulgation of user requirements. The organization's stand-

ard cost-effectiveness justification process is necessary

for the first, while an independent feasibility study is

normally initiated to settle the second. When either pro-

cess is circumvented, continuity of future organizational

decisions and actions is jeopardized.

When user requirements are articulated, they become

inputs for resource utilization estimates which, along with

resource availability issues, form the major considerations

of development agency top management review. This review

determines if the organization will pursue involvement (e.g.

respond to Request for Proposal) and must assure that high

23



risk projects are discarded. [9, 10] Appropriate assessment

of potential system/program complexity is crucial to the

accuracy of this risk determination.

If the decision to continue is reached, specification

(i.e., translating requirements to guidelines for development)

is commenced as a final activity in the analysis phase. A

management review concluding the analysis phase avails

development agency management a final opportunity to determine

project continuance/termination prior to major resource

expenditures. Documentary output of the specification effort

will support this review and guide future Drogress of the

project. It is composed of detailed administrative and tech-

nical documents which are meant to form the bases of all user-

developer contracts. [9)

2. Design

The design phase covers all remaining efforts required

to complete the technical solution in light of specifications

and imposed constraints. It culminates in describing the

best technical solution in terms that will facilitate coding.

[II] Short stopping errant designs is essential to avoid

massive, costly rework in a project's latter stages. Customer/

user involvement in the evaluation process is mandatory to

ensure continuing communication and to engender commitment to

approved designs before they key follow-on effort.

3. Coding

Coding includes both the translation of designs to

computer language and the process of documenting developed

programs.
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The coding and design phases are particularly inter-

related and can be interspersed with a technical review of

each subroutine to track and assure progress. An important

management review is often held at the end of coding with

summary data available from all preceding technical reviews.

As a rule, a large percentage of planned project development

funds have been expended at this stage. With such a commit-

*ment from the customer, project termination is rare once

coding is complete. Thus, while earlier reviews concentrate

on project continuance, the major objective now is "to main-

tain schedules and budget by" shifting manpower from less

important activities to critical tasks, canceling or delaying

features, allowing standard practices to short-cut, and if all

fails, to immediately publish a schedule or budget "increase."

While these are management concerns throughout the project,

they become particularly germane at the completion of coding

when a genuine, albeit tenuous, attempt is made to refine

total resource requirement estimates. [91

4. Integration and Test

This phase includes the processes of merging all sys-

tem/software components and demonstrating performance quality.

Daly [9] identifies four stages of software testing

as follows:

- Segment or unit testing verifies the operation of

individual design functions as they are developed.

- Module testing assesses segments combined into

modules.

25



- Integration testing evaluates the progressive

activity of merging all software into a single

program.

- Systems testing assures that the software and all

associated hardware in the total product system

can function satisfactorily together. During

this process it is important to exercise each

function under full load or stress conditions

such that the environment to be experienced by the

user is simulated as closely as possible.

Both unit and module testing may be included in the coding

phase. Integration and system testing are often duplicated,

first by the developing agency and then during acceptance

tests by the user. A potential for time and money savings

exists here by having the user present for final integration

and systems tests. It is an important opportunity for the

user to gain familiarity with the program and confidence in

the developer and program quality. Further, such arrangement

may result in satisfaction of select acceptance requirements

and thus cut test time. As the danger of compounding existing

disagreements is great, this opportunity should only be ex-

ploited if, in the judgement of management, undue strain will

not be placed on the customer relationship.

Testing requirements must be written and agreed upon

very early in the development cycle. It is imperative that

they reflect user involvement and represent a thorough yet

cost effective attempt to verify system performance. [6]
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5. Life Cycle Maintenance

Once acceptance testing has been satisfactorily com-

pleted, and the system transferred to the user, the life

cycle support or maintenance phase begins. AsFigure 3 [5] indi-

cates, this activity constitutes a growing majority of devel-

opment costs. Update maintenance, initiated by changed

specifications resulting from altered user requirements must
generally be handled on demand. Unless such alterations can

be anticipated through close involvement with user, little

can be done to minimize these changes. However, corrective

maintenance is a preventable evil. Improvement techniques

in all other phases must be invoked to minimize the occurrence

of operational "bugs." These errors are even more costly to

correct than those discovered in testing for the following

reasons [6]:

- Problems are often more complex.

- Problems are reported as system malfunctions

by operators not knowledgeable of data required

to duplicate failure--effort must be expended to

translate problem symptoms into systems error.

(Operator training may improve this problem.)

- Problems are usually addressed by maintenance pro-

granuers who are unfamiliar with program develop-

ment and must spend excessive time reviewing

detailed code (normally not top personnel [5]).

- Another round of problem definition, design, code,

test and full documentation is initiated.
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D. SOFTWARE DEVELOPMENT HISTORY AND CURRENT ISSUES

1. General

The seemingly limitless applications of computers

forced an excessive demand on the productive capacity of the

software industry from its inception. This demand for results

' and the disjointed response from many splinter companies and

work groups created a chaotic, fragmented growth pattern.

The sheer speed of growth precluded early development of
Alstylized professional standards which could have aided indi-

vidual project management control. Early development of such

standards was defeated on at least three counts.

In the first place, there was and continues to be a

I perception that programming as an analytic activity conflicts

with the intrusion of conventions and rules. At least in the

minds of those involved. Many o' the field's early successes

required inspired, innovative, problem-solving approaches

which might well have been stifled by the weight of ponderous

standards. [12] The time proven bromide that standardiza-

tion penalizes the best performances carries much credibility

for those who participate in the analytic process.

Further, the traditional approach to programming in-

volved much independent work and often formed a strong bond

between individual programmers and their programs (which

often symbolized a massive personal time commitment). Pro-

grammers thus tended to be somewhat irrationally blinded by

pride of authorship when subjected to criticism of "their"

program. This work environment was not conducive
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to the development or imposition of universal program-

ming standardization. [12]

Finally, as Paretta and Clark [13] point out, manage-

ment control was deemphasized and thus ineffective in early

software projects. The resulting dysfunctional behavior

affected productivity and product quality and caused complexi-

* I ties to abound. Since programming ground rules were unknown,

managers were often not able to distinguish many aspects of

program quality (e.g., efficiency, maintainability, etc.).

"Finding it difficult to reliably measure the quality dimen-

sion, quantity of output became the primary focus of control...

The ability to keep programming projects on schedule, and to

complete them on time thus became the two major criteria by

which programmers were rewarded." [13] Despite these rewards,

few projects came in on time with acceptable reliability. The

natural response to such stimuli was a massive dose of sub-

optimization manifested by routine incorporation of shortcuts

in software development. Such efforts focused on immediate

tangible results to the detriment of long term consequences.

Programs were patched together with focus on speed of comple-

tion and little or no interest in final structure or documen-

tation. The proliferation of complex program structures in

this environment is not surprising as the few planned struc-

tures that did exist were soon infested by layers of debug

patches. Perhaps worst of all, an attitude of 'damn the

documentation, full speed ahead' infused itself in the
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profession's work habits to such a degree that it remains

one of the most serious impediments to project control

even today.

"The pressure to produce working programs often
meant that there was little time for programmers
to think about documenting programs. The documen-
tation that was available was mostly inadequate
because few conventions existed for defining what
should be included in program documentation, and
for determining what level of detail was sufficient
to make it comprehensible. Also, documentation
was usually kept in the possession of the original
programmer, and not in a program library where
it could be made available for general use. This
caused great confusion when one programmer was
called upon to perform maintenance on a program
written by another, especially when the latter was
no longer with the firm." [13]

While the effects of much of this early confusion

remain, a growing effort to identify and address such

problems is evident.

2. Assessing Project Progress

Without doubt, the central historic issue in con-

trolling software development has been the inability of

management to successfully assess or predict progress in

software development projects. [14, 15, 13] As noted

earlier, the nature of software is characterized by the

absence of physical characteristics. Since software develop-

ment progress must be measured against a basically mental

process of problem solving with no tangible outputs, early

project managers often merely relied upon either questioning

programmers or measure of man-hours expended to determine work
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accomplished. Brooks [15] points out the folly of both

practices. Individual programmers are universally over-

optimistic with regard to evaluating their own work and

abilities to complete a project quickly. Further, number of

man-hours expended fails to measure the quality of time spent

or the relative ability of those working together to effec-

tively communicate and avoid redundant or conflicting

activities. [15, 11]

To gain control, management must intelligently create

intermediate deliverable items (e.g., specific design docu-

mentation) for which personnel can be held accountable.

The quality (format, completeness, etc.) of deliverables can

be specified by promulgated standards. Assignment and

scheduling of resources to each of these deliverables consti-

tutes the milestone approach to controlling development pro-

jects utilized by most organizations today. Management

nethodology used in resource estimates and allocations is still

far from standard, often relying upon individual experience.

Pioneering work in the principles of predicting resource

requirements and tracking progress has been published but is

not yet widely used. [e.g. 16, 17, 18]

3. Development Phase Interrelationships

Thibodeau and Dodson [19] postulate a cost prediction

model which recognizes the impact of variable phase interrela-

tionships on project utilization. In individual projects,

these relationships may be either controllable or forced by

constraints (of time, etc.). In either event, management
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should be aware of their probable impact on schedule, perform-

ance and cost. While actual interrelationships are complex,

the authors underscore the following project management issues:

- Inadequate resources allowed for design (and to a

lesser extent coding) activities will result in more costly

testing and/or higher error rates during life cycle maintenance.

- Planned phase overlaps (or deviations from the devel-

opment plan that result in actual phase overlaps) adversely

affect cost-driving variables.

- Software development activities are difficult to pre-

cisely define and restrict to particular phases--this ambiguity

can be exploited in the process of cost reporting by inaccurately

tying the easy to ascertain incurred costs to the more difficult

to measure progress accomplished.

4. Quality Documentation and Configuration Management

In effect, software is documentation. The task of

building another program copy from a full set of documentation

would certainly be trivial compared to generating a replacement

set of documentation solely from a program tape.

Further, quality documentation provides the following

benefits:

- Assures full value and control of product when

delivered to customer.

- Minimizes duplication of effort by recording solved

problems.

- Saves interruption time by allowing future investi-

gators to research on own.
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- Compensates for the departure of an employee;

consolidates work completed for the organization.

Paradoxically, while the importance of documentation

is virtually unchallenged in the computer industry, the

delivery of timely, complete and accurate documentation is

rare. Much of this failure is attributable to the low esteem

I from which documentation suffers in the minds of most pro-

* grammers. [12, 14] "The nature of programmers is such thatr

* I interesting work gets done at the expense of dull work and

documentation is dull work." 11]

Unfortunately, programmers must provide the bulk of

effort in documenting their programs since they are the only

available authority (without significant lead time). There-

fore, management must provide an incentive and control struc-

* ture that reinforces the importance of timely, quality

-Idocumentation. This is best done with firm development

standards to define milestone deliverables in detail, refusal

by management to recognize development progress without

delivery of appropriate documentation and the early institu-

tion of configuration management.

Configuration management is a control process which

recognizes the importance of matching documentation with soft-

ware and responds to the dichotomy between the ease of making

program changes as opposed to the difficulty and tedium in

making documentation changes. If program changes are allowed

to be made without documentation, logical future program

refinements or corrections will be impossible. "It is better
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not to have any documentation than to have documentation of

a former version. Without documentation it is at least

clear that to modify the program reliably one should ...

start from scratch." [20]

Configuration management is important throughout

development but becomes critical in the integration and life

cycle support phases when uncontrolled changes can ruin the

entire project. When formal configuration control is in

effect, each proposed code/documentation change must be sub-

mitted with justification and test plan (if applicable) for

managerial approval. A properly run configuration control

program will provide a developing organization the following

benefits: [9]

- Software changes made in coordination with related

hardware changes.

- Each software change appropriately tested and

documented.

- Design new versions using existing software.

- If multiple versions are being maintained, ensure

that corrections made to code are reflected in

all common software.

5. Adequate Specification

Failure during a project's early stages to translate

user requirements accurately and completely into both system

and software specifications has been a major impediment to

the success of many software developments. [21, 221 Incon-

sistencies and ambiguities introduced in this translation
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process allow multiple intepretations during design and the

inevitable accompanying complex structures which result when

design guidance is allowed to convey variable meanings to

those who implement. As a project progresses, conflicting

development assumptions are often buried by short term

efforts to force results by piecemeal patching aimed at

satisfying piecemeal specifications. Residual inconsistencies

and conflicts inevitably cause major problems (system degrada-

tions and failures) in integration/acceptance testing or

during system operation, often with devastating consequences

in additional resource commitment. Reluctance to produce

formal, quality specifications stems largely from the level

of effort and difficulty involved with their generation [23]

and the propensity of projects to proceed on their own momen-

tum by deriving requirements spontaneously as production

needs dictate. Unfortunately, these requirements created

'on the fly' are often found to be in conflict with true

user/customer desires. This result is not surprising since

few customers plan thoroughly enough to know, in a project's

early phases, exactly what they want, much less what words

are required by analysts/programmers to guide production.

The traditional result has been that specifications, which

should function as precise bases for common agreement, often

*abound with ambiguous terms ('suitable,' 'sufficient,' 'real

time,' 'flexible') or precise-sounding terms with unspecified

definitions ('optimum,' '99.9 percent reliable') which are

potential seeds of dissension or lawsuits once the software

is produced." (51
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Several difficult obstructions to management control

ripple throughout a project if requirements specifications

are of poor quality. Most visible of these is the positive

growth in relative cost to correct errors during each

succeeding development phase. Figure 4 [5, 24] depicts sum-

mary data from three corporations concerned with large scale

software development. The wisdom of investing resources in

a project to detect and correct errors in early phases such

as definition/specification instead of relying on development/

acceptance test efforts is evidently justified by quantum cuts

in quality assurance expenses. Further, poor requirements

specifications offer the following ills:

- User's inputs are minimized since no clear

statement of desires exists.

- Management has no chance to exercise control

since no clear production goals are available.

- No coherent guidance exists for design personnel.

- Test plans/procedures are impossible to write in

good faith since there are no hard criteria for

project performance available. (5]

Generating useful specifications is a time-consuming

process for which the rewards of quality are normally not

validated until the end of system development. This demoti-

vating aspect has in great part accounted for the pitiful

specification efforts that have crumbled beneath so many pro-

jects. Hope in this area has emerged in the form of growing

attempts to automate the specification process. These efforts
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include Teichroew's work with PSL/PSA (problem statement

language/problem statement analyzer), [25] Ross' Structured

Analysis [26] and TRW's SREM. [24] With computer assistance,

such systems are taking direct aim at eliminating or reducing

the ambiguities, inconsistencies and omissions which have

universally plagued specification generation. Their increa-

sing use by development agencies is an encouraging indica-

tion of progress. TRW has developed and is continuing to

perfect SREM. Variants of both SREM and PSA/PSL are under

evaluation at FCDSSA. Hughes personnel have worked on a

Design Analysis System (DAS) which incorporates PSL/PSA in an

interactive, graphics oriented system supporting requirements,

operations and software design verification. Figure 5 [27]

depicts the innovative and ambitious DAS concept.

6. Top-Down Design

In the perfect project progression, all specification

documents would be complete prior to the design phase. The

design would then take form rather easily from precise speci-

fications. For practica. reasons, this is almost never the

case. To feel comfortable with cost estimates, management

has traditionally initiated one or more software designs prior

to the continuance review at the completion of the specifica-

tion effort. This rational demand for more information

earlier is termed "The requirements/design dilemma" by Boehm

[5] and is generally justifiable in the pursuit of improved

estimation data. Unfortunately, this trend is often parlayed

into a "bottom-up" approach to design wherein software
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components are actually developed prior to appropriate

consideration of potential interface and integration prob-

lems. Existing software components then drive the remaining

design effort. This backward approach to design has survived

for so long because there was little formal knowledge of the

software design process or what makes a good software

designer.

As in specification, design procedures developed

spontaneously in the early 'cottage industry,' with no mana-

gerial guidance, are inadequate. The problem has been one of

pressure to get on with the project and the result has often

been incomplete designs which cause errors that are detected

later in the project when cost to correct is highest. Reli-

ability and life cycle costs suffer irreparably in this

process. "More emphasis needs to be placed on software design

so that the product is more reliable, less costly to maintain

and easier and less costly to operate. So often, in the

expediency of getting a product out of design, these factors

are totally neglected to the later dismay of the user, when

he discovers how much it costs to maintain and operate his

new system." (10]

'Top-down' design, as practiced by a growing number of

projects [23, 28, 30] seems to make much more sense in terms

of projecting and maintaining control. "It begins with a top-

level expression of a hierarchal control structure (often a

top-level 'executive' routine controlling an 'input,' a

'process,' and an 'output' routine) and proceeds to iteratively
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refine each successive lower-level component until the entire

system is specified. The successive refinements, which may be

considered as 'levels of abstraction' or 'virtual machines,'

provide a number of advantages in improved understanding,

communication and verification of complex designs." [5] If

specification modifications are required in later stages due

to changing user needs, disruptions will normally be minimized

since corrections are restricted to lower-level code. (Higher-

level code should require no modification as long as the major

purpose of the program remains intact. [10]) Beyond the testi-

monial evidence of several completed projects, an indication

of the labor/cost savings potential of top-down design was

provided in initial experiments conducted by Comer and Halstead.

[29] The product of an emphasis on complete, timely and

quality design is the ability to focus early on the potentially

most challenging project problem areas (e.g., interface defini-

tion and test strategies).

Previously mentioned automated specification techniques

facilitate the top-down concept by providing "a medium for im-

proved communication between the proponent (user), designer,

coder and maintainer..." (30] Also of note are the efforts

to improve design representation over the traditional flow

charts. (E.g., The hierarchal input-process-output (HIPO)

technique produces easy-to-understand graphics which represent

software in a hierarchy of modules, each of which is symbolized

by its input, its output and a summary of the connective

processing. [5, 3])
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7. Ordered Program Structures

The historic causes (lack of standardization, pressures

to produce quickly, inadequate documentation, etc.) and result-

ant ills of complex coding structures have been mentioned.

Several techniques have been proposed and utilized to simplify

these structures.

a. Structured Coding (or Structured Programming)

The theory of structured coding, developed by

Dijkstra [32] and expanded into a set of techniques by him and

others, is now in widespread use (including at the three

facilities visited: TRW, Hughes and FCDSSA). The most signifi-

cant feature of structured coding is the recognition that an

excess of branching statements contributes enormously to

structural complexity. With this realization in mind, program

modules are limited to single points of entry and exit and

branching statements within modules are strictly controlled.

Following these techniques maximizes sequential logic flow and

contributes greatly to readability and the enhancement of all

revision quality factors by simplifying and standardizing pro-

gram constructs.

b. Chief Programmer Team

The Chief Programmer Team (CPT) concept [33, 34]

is analogous to a surgeon surrounded by a staff of specialists

whose function it is to maximize his performance. The chief

programmer similarly acts as an expert surrounded by program-

mers who improve his efficiency by accomplishing all routine

tasks and free the expert to concentrate on the most difficult

aspects of the project.
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"The chief programmer team represents a managerial
approach to program development that offers some needed
relief from the problems of organizational structure...
The emphasis in chief programmer teams is on producing
programs that are well designed by taking advantage
of experienced programming talent, rather than delegating
important programming functions to inexperienced pro-
grammers on a 'sink or swim' basis. Because the team is
organized around experienced programmers, projects can
develop more quickly and with more direction than when
conventional staffing approaches are used. Instead of
just being part of a poorly led thundering herd of junior
programmers, each member of the team is a specialist
who makes an individual contribution to the project under I
the close direction of the chief programmer. The arrange-
ment enables better utilization of personnel, reducing
the number of people involved in a programming project.
Not only does this generate immediate cost savings, it
also suppresses the numerous communication and coordination
problems so often associated with software projects. As
an active participant in all stages of development, the
chief programmer is also in a better position to evaluate
the headway the team is making on a project. His direct
involvement means he does not have to rely on tangible
evidence to gauge a project's progress." [13]

A modified implementation of CPT by Naval Air Develop-

ment Center, Warminster for the CVTSC software project noted

positive results in maintaining design consistency and mini-

mizing integration problems "which arise from conflicting

implementations." [35] On the negative side, this approach

may be limited by the manning available. Further, it is

doubtful that a career programmer will desire to spend more

than a few projects functioning at the absolute direction of

the "Chief Programmer."

c. Program Walkthrus - Egoless Programming

Weinberg [12] articulated the problems created by

ego involvement of programmers with any code that they produce.

"A programmer who truly sees his program as an extension of

his own ego is not going to be trying to find all the errors
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in that program. On the contrary, he is going to be trying to

prove the program is correct--even if this means the oversight

of errors which are monstrous to another eye." To combat this

blinding and destructive link between programmers and their

code, "program walkthrus" have been instituted. In this tech-

nique a review group of the programmer's peers (i.e., no

management personnel) scrutinize code in detail prior to

running it on a computer in order to detect errors as early

as possible. Key to such proceedings is the atmosphere of

correcting 'our' product and never of attacking 'your' pro-

gramning skill. Reviewing/presenting roles must be rotated

to avoid pressure build-up from constant review. [13]

8. Test/Integration

Testing and debugging large scale software remains the

most tedious, frustrating, expensive and unpredictable phase

of development. Despite massive expenditures, testing suc-

cesses remain limited, by virtue of the overwhelming size and

complexity of many large scale systems. Operation software

is never completely free from error. Proof of the ineffective-

ness of past and current testing techniques are the inevitable

residual errors that occur after the most rigorous testing

available: (e.g., "Software systems used for the Apollo

manned spaceflight program are probably one of the most

thoroughly tested programs in the world. Yet software failures

were detected in Apollos 8, 11 and 14." [36])

As in specification and design, initial industry

attempts to predict/guarantee satisfactory software operation
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(i.e., reliability) were somewhat misguided. Specifically,

the differences between the well understood engineering prin-

ciples regarding hardware failure and repair and the phenome-

nology of software errors and correction were not fully

appreciated. The result of these differences was a general

misapplication of assumptions concerning required level and

type of test effort for software products. The effects of

these misunderstandings are manifested in the dramatic increase

in the ratio of actual to predicted costs to maintai- pro-

grams--i.e., to correct designs and debug residual errors

remaining in operational software after satisfactory comple-

tion of testing. (Figure 3 [51 depicts this growth. Note:

Maintenance costs also include update design changes.)

Analysis of the growing body of data concerning soft-

ware errors is now providing a number of germane insights into

their nature which should be closely considered in future

projects. [5] These insights include the following:

- Program complexity is a major factor in the

propensity of making programming errors and the

level of effort required to detect and correct.

(1, 37]

- The development of test plans should begin as

soon as possible after specification. This early

development can pinpoint inconsistencies and

omissions in the software specifications. [9]

- Testability should be an important consideration

in program design and architecture. [38]
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- Specification should be accomplished with

potential structural complexity and ease of

testing as prime considerations. [39, 40]

* - A series of automated aids for test generation

* Iand program evaluation under current development

or appraisal have shown excellent potential for

improving program quality and reducing develop-

-I ment costs. (361

j 9. Verification and Validation (V&V) [6]

Concern for assuring quality in large scale programs

has led to the development of a systematic process of ana-

lyzing and testing documentation and code. This process

takes its name from its two aims:

Verification - The determination that each develop-

ment phase satisfies formal and

logical requirements of preceding

phases.

Validation - The determination that the developed

software and documentation satisfies

all performance requirements.

(The term validation is used in several different

senses in the somewhat related fields of Department of Defense

(DOD) system/software acquisition and software development.

These differences should be understood.

- A requirements 'validation' activity occurs in the

first (conceptual) phase of DOD system acquis on. This

activity addresses the legitimacy of defined rL lirements to

satisfy stated needs.
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- The second phase of DOD system acquisition is termed

the 'validation Phase.' Here 'validation' refers to the con-

ceptual proof that the solution (e.g., preliminary system

design) is ready to proceed into full scale development. [7]

- As used in 'V & V,' 'validation' is a set of activi-

ties that occur during the test and integration phase of

software development.)

A properly implemented V & V program, invoked in a

project's earliest stages, can both assure software quality

and aid management in assessing development progress. As in

all quality assurance activities, the program must be accom-

plished by a technically competent, independent team having

no political connections with the development group. [40, 41]

Specific techniques utilized by the V & V team can be adapted

to the particular program characteristics (real or non-real

time, scientific or business, algorithmic or logic intensive)

and depend upon a case-by-case cost-effectiveness determina-

tion. Information derived is useless unless fed back for

timely management review and utilized to key iterative improve-

ments to deficient areas. A general chronological list of

objectives and possible techniques is included below:

- Requirements Verification - Analyze each require-

ment for criticality, risk, testability, and impact

on software.

- Set up mechanism to assure traceability,
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- May use problem statement languages, correctness

proofs, truth table exercises, abstract simulations.

- Design Verification - Examine design logic,

structure, data base design, architecture and

documentation considering impact on all revision,

operation and transition quality factors.

(Correctness, efficiency and usability are

emphasized.)

r- May use special design languages, analytic

techniques, special simulators and models. [41]

- Code Verification - Much iteration between Design

and Code efforts expected.

- Inspect code to ensure design goals are followed,

complex structures minimized, organization's

procedures followed.

- May use inspection, automated analysis aids

(e.g., static/dynamic analyzers, standards

enforcers, data base verifiers), automated

tracing mechanism, emulators, code level

simulators.

-Validation - Parallels test and evaluation.

- Includes both monitoring of developer's test

efforts and independent tests.

- All quality factors important but emphasis is

on correctness and reliability.

- Continuing thread of traceability from require-

ment to design to code to test is a key.
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The V & V concept is enjoying increased visibility and imple-

mentation, particularly in DOD-related projects. Whether or

not its nomenclature is formally used in all or part of an

individual quality control program, quality assurance goals

and limitations remain the same. Quality is a function of
I. the complete development cycle and cannot be tested or moni-

tored into a system. A rigorous review and audit function is

" .only as good as the effectiveness of its feedback loop in

causing timely product and process improvements. [6] The

potential of a quality assurance organization's success is

thus defined by the extent of promotion and backing it

receives from management policy and action.
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III. COMPLEXITY

A. GENERAL

The essence and impact of complexity as it relates to

computer programming is a difficult concept to convey and

quantify. Despite the difficulty, widespread recognition

that a better understanding of this relationship will doubt-

less lead to improved management and an accompanying reduction

of software development costs has stimulated a growing descrip-

tive effort in the literature. In this chapter, an attempt

will be made to consolidate and extend the major thrust of

these ideas.

The traditional concepts--extent of varietal content and

degree of interrelationship--continue to be germane. However,

difficulties have arisen in applying these concepts to system

and software assessment and management. The description of a

particular aspect of complexity is often accompanied by a

metric--i.e., a method of qualification (by measuring a

surrogate) designed to provide an indication of the extent of

complexity present in a problem-solving process, computer

program or system. When a particular metric is heavily used

in a production or research project, language often becomes

relaxed and the distinction is sometimes lost between the

abstract degree of complexity present and the explicit attempt

to measure one of its manifestations. Since a potential for

false indication exists with all surrogate measures, this

distinction should be considered in the interpretation of
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each metric. The most trivial complexity metric is merely

the number of source statements present in a program. Although

this metric is hardly accurate alone, large programs are

generally more complex than smaller ones and size is sometimes

useful in gauging the meaning of other metrics.

I; The following section lists a number of methods devised to

classify/quantify various facets of complexity.

B. TYPES OF COMPLEXITY

1. Conceptual and Software Complexity

Conceptual complexity refers to the level of diffi-

culty associated with conceiving and solving the real world

problem. Software complexity covers the form and structure

that results when this solution is translated to a computer

language. While these two aspects are not independent, their

functional relationship is neither simple nor consistent.

4 Indeed, the most trivial of concepts can be transformed into

a computer program so complex as to confound all efforts to

trace logic flows, find errors or make minor modifications.

Conceptual complexity is important to project management and

must be considered appropriately in terms of manpower mix,

etc. However, it is the inability to understand and control

software complexity which has traditionally been the downfall

of major projects. Classifications of computer related com-

plexity have generally either attempted to clarify or to

further subdivide conceptual and software complexity.
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2. Computational Complexity

Computational complexity is the level of involvement

and difficulty associated with computing functions. [42]

Work in this field deals with quantitative aspects of computed

solutions, recursive function theory and analyses of computa-

. tional models like the Turing machine. (e.g. 43, 441 In

relation to computer programs, computational complexity

metrics generally provide data reltvant to some program

* resource usage. CPU run time and core usage were among the

first concerns of programmers and directed early attention

to these manifestations of complexity. (As multiprocessed

and time shared computer systems evolved, other measures

(e.g., channel usage, device usage, secondary storage require-

ments, supervisor usage, etc.) became important considerations.

[45] While these usage measures are related to complexity,

they are generally not considered direct manifestations.)

In describing computational complexity in logic cir-

cuits and the Turing machine, Savage [46] identifies the

following complexity measures:

- Computational complexity: a measure of the 'size'

of a logic circuit. "The combinational complexity

of a functi6n f relative to a basis a (set of

Boolean functions such as AND, OR & NOT), denoted

Cn(f), is the minimum number of elements from Q

needed to realize f with a logic circuit."
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-Delay complexity: a measure of the 'depth' of a

logic circuit. The depth of a combinational

machine is "equal to the number of logic elements

on the longest (directed) path from inputs to

outputs. The delay complexity of f with respect

to 9 is the depth of the smallest depth circuit

over n for f."

-Turing machine program complexity: the length of

shortest length program for a function

: f: {0,1}n {0,1}m on a Turing machine.

3. Psychological Complexity

Psychological complexity concerns characteristics of

an individual program which make it difficult to understand

and manipulate. "...psychological complexity assesses human

performance on programming tasks." (421

4. Subjective Metrics

In the early phases of a project, predicted complexity

must be based upon the subjective evaluations of early plan-

ners. Many organizations rely almost wholly upon prediction

by experienced analysts and programmers for cost estimates

and follow-on planning data. Such predictions take into

account similarities and differences with past projects and

naturally vary from individual to individual or group to group.

Subjective complexity ratings may simply be expressed by quali-

ty descriptors (e.g., 'extremely complex,' 'very complex,'

etc.) or may be translated to rank numbers (etc. from 1 to

5), depending upon the requirements stated by managers. While

such approaches may be useful in preliminary cost estimates
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when little time or concrete data is available, their lack

of precision and susceptibility to individual bias generally

make them unacceptable for detailed planning, resource allo-

- r cation or test strategy formulation. Despite these apparent

weaknesses, many organizations have yet to progress beyond

subjective appraisals of complexity.

5. Gilb Metrics

Gilb (47] proposed a methodology to measure and compare

logical and structural aspects of complexity in various

systems. [48]

- Logical complexity: the extent of decision-making

logic within a program or system. The metric

considers "absolute logical complexity" (CL

number of nonnormal exits from a decision statement

(IF, ON, AT END, etc.) and "relative logical

complexity" (cL - ratio of CL to total number of

instructions).

- Structural complexity: degree of interrelationships

between subprograms or subsystems. The metric

considers "absolute structural complexity"

(CS = number of modules or subsystems) and "relative

structural complexity" (cS = ratio of module/

subsystem linkages to the total number of modules/

subsystems).

6. Thayer Complexity Model

Thayer [49] offers consideration of various measurable

complexity surrogates, both separately and together (via
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weighted formula), to understand the error proneness and

probable difficulty of error detection and correction in a

program. [48]

- Logic complexity metric (referred to as Total Logic

Complexity, LTOT) can be numerically evaluated for each

routine by calculating:

L =LS/EX + L + L + L
TOT LOOP IF BR

where

LS = number of logic statements

* EX = number of executable statements

LOOP computed loop complexity for the routine

in accordance with the following equation

(values scaled by x 1000):

LLOOP = EmiW i

where
W5i Q so that 1 = 1 ,

14 Q - 1 i=l
and

m. = number of loops in routine at indenture
or nesting level i

W. = weighting factor

Q = maximum level of indentures in the system

4 = shaping value

L = computed IF complexity (number of IF state-IF

ments, nesting level) in accordance to the

following equation (values scaled by x 1000):

LIF En Wi
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where

ni = number of IFs in routine at indenture or
nesting level i

W. = weighting factor
I1

LBR = number of branches BR, times 0.001

- Interface complexity metric (C INF ) can be numerically

evaluated by calculating:

CINF = AP = 0.5 (SYS)

where

AP = number of application program interfaces

SYS = number of system program interfaces

, 0.5 = estimated interface weighting factor.

- Computational complexity metric (CC) can be numeri-

cally evaluated as follows:

CC = (CS/EX)'(LsYs/ZCS) CS

where

CS = number of computational statements

LSyS = ELTOT, (total logic complexity for each routine)

CS = the sum over all routines of the values of CS
for each routine

- Input/output complexity metric (C1/0 ) is defined for

each routine as follows:

CIO = (S1/0/EX).(LsYs/ESI/o).SI1/0

where
Si/O= number of input/output statements

ESo = sum over all routines of the values of SI'o0 foreach routine.
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- Readability (U READ) is defined for each routine as

follows:
UREAD = COM/(TS + COM)

where

TS = total number of statements (executable plus
*nonexecutable, exclusive of comment statements)

COM = number of comment statements.

- Total complexity (CToT) combines all factors as follows:

CTOT = LTOT + 0.lCINF + 0.2CC + O.4C1 / 0 + (-0.1)UREAD

7. McCabe Graph - Theoretic Complexity Model (50, 51, 48]

a. Graph Model of Programs

McCabe [50, 51], Schneidewind [1) and others have

noted the validity of utilizing the graph model to represent

computer program structure. Briefly defined, a graph of a

program is composed of a set of nodes connected by a set of

* directed arcs. The nodes represent statements or elements of

a program while arcs represent program control flow.

Figure 6 [1] shows a graphic representation of a

simple program which includes several basic program constructs.

In analyzing control flow from a given node, 'successor' or

'predecessor' nodes are determined by the indicated directions

of connecting flow. (45]

The most significant benefit of the directed graph

model is the attendant ability to measure certain complexity

surrogates related to the graphic representation. These meas-

ures can then be used to control complexity and develop optimal

testing methodology.
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FIGURE 6

DIRECTED GRAPH REPRESENTATION OF

A SIMIPLE PROGRAM

1 20
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b. Cyclomatic Complexity Metric

McCabe [50] defines cyclomatic number V of graph

G with n vertices, e edges and p connected components as follows:

V(G) = e - n = p

By limiting application of this definition to single entry and

- -exit programs, an equivalence between V and the maximum number

of linearly independent circuits is asserted.

Schneidewind [] extends this interpretation as

follows:

"Since V is equal to the number of independent

circuits, it is equal to a set of sub-structures which can be

identified in a directed graph. When structured programming

techniques are used, the independent circuits are identified

with the constructs of structured programming: While DO,

IF THEN, IF THEN ELSE, etc." Further, "...by generating all

circuits from the fundamental circuits, the different execu-

tion sequences which must be tested can be identified.

Secondly, the frequency of occurrence of an arc in the circuits

indicates the relative importance of testing the arc."

c. Other Directed Graph Related Complexity Metrics

- Reachability (R): summation, over the nodes,

of the number of available ways to reach a

node. (Average reachability (r) = R/# of nodes.)

- Number of Paths (Np): minimum number of paths

(i.e., no loop traversed more than once in

succession).
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first gru: k

activity addresses the legitimacy of 
defined r. irements to

satisfy stated needs.
47

* - Number of Nodes (NN)

- Number of Arcs (NA)

8. Halstead Metric

Halstead [e.g. 52] proposed and refined a comprehensive

discipline concerning "measurable properties of written material

expressed either in computer program or in prose." [53] The

chief tenet of this discipline (now known as Software Science)

is the application of natural science methodology to investi-

gate characteristics of written communication. With regard to

software complexity, Halstead reported an important metric to

gauge program difficulty which took into account the variety of

instructions (vocabulary) and their frequency of usage (length).

Instructions were subdivided by operator codes and operand

addresses. The Halstead effort metric (E) is calculated as

follows:

E = n1N2 (N1+N2 ) log(T 1 +n 2)
2TI 222

where

n, = number of unique operators

n2 = number of unique operands

N1 = total frequency of operators

N2 = total frequency of operands

This value indicates the number of mental comparisons required

to generate a program. Follow-up experimental work has found

significant correlation between Halstead's metrics and such

measures of programmer performance as program errors, program

quality and time to program. [54]
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9. System Complexity

Much of the theory developed around aspects of concep-

tual and software complexity can be abstracted and applied to

the organization and structure of systems. As an example,

the directed graph model might be utilized to represent a sys-

tem structure with communication paths translated into arcs

and modules translated into nodes. A cyclomatic number anal-

ysis can then be used to indicate the more complex system

structures and/or used in the system design process to main-

tain ordered system structure.
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r IV. THE NAVAL POSTGRADUATE SCHOOL (NPS) EXPERIMENT

A. PURPOSE

As indicated in the previous chapter, numerous theoretic

approaches to defining and measuring complexity have been

proposed. While these approaches are useful in understanding

complexity relative to the programming task, many of them are

difficult to apply directly to management control, either be-

cause they are too subjective (e.g., psychological complexity),

because they require data that is unavailable until the pro-

ject is essentially complete (e.g., the Halstead Metric) or

because they have not yet been sufficiently corroborated by

empirical data. In an important step to address this opera-

tional requirement, Schneidewind [1] directed an experiment

conducted by Hoffman at the Naval Postgraduate School (NPS)

designed to provide quantitative data in support of the

following:

- The hypothesis that complexity is a significant

determinant of both the propensity to commit pro-

gramming errors and the time required to detect

and correct existing errors.

- If the hypothesis is true, a determination of valid

complexity measure(s) to predict probability of

programming error commission and the difficulty of

error detection/correction.
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Detailed methodology and results of this experiment are

available [1, 37] and will not be covered here. However, for

continuity of discussion, a brief overview of the experiment

and its potential application is presented.

B. APPROACH AND RESULTS

Corroboration and extensions of the previously cited work

by McCabe [50] concerning cyclomatic numbers and other meas-

ures were primary concerns of the NPS experiment. In conduc-

ting the experiment, four projects were programmed by Hoffman

as part of his Masters in Computer Science Degree requirements.

[371 The work was accomplished in ALGOL W for IBM 360/370

execution. Such software engineering concepts as top-down

design and structured walkthrus were used throughout. Error

categories were broken down in comprehensive detail. Informa-

tion was then collected concerning the design, coding, debug-

ging and testing phases of each project along with error

listings recording the nature of each error discovered. Of

particular interest was the distribution of labor time used

to detect and correct errors and the relation of selected

complexity metrics to the structure containing each error.

Table III [1] depicts project sizes and man-hour distribution.

The following complexity metrics were evaluated:

- NUMBER OF PATHS (NP)

- CYCLOMATIC NUMBER (V)

- REACHABILITY (R)

- AVERAGE REACHABILITY (r)

- NUMBER OF SOURCE STATEMENTS (S)
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Results and analyses indicated that while a linear rela-

tionship could not be proved, all complexity metrics con-

sidered were significantly higher for structures which had

errors, thus supporting the original thesis. Tables IV and

V (1] summarize these results. Also, error detection and

correction times were generally longer for programs of higher

complexity metrics. Further:

"When the number of errors found in procedures was cor-
* related with cyclomatic number and number of source

statements, the correlation coefficients were higher
for other complexity measures. It also appeared that
these two measures were related to the total error
detection and total error correction times. It was
learned that trying to keep the cyclomatic number
small not only reduced the number of errors but also
contributed to the reduction of debugging and testing
efforts." [37]

C. PROJECT SCOPE

Two limitations of scope should be recognized in evaluating

results of the NPS experiment:

- Designing and Coding/Debugging activities were empha-

sized at the expense of analysis and integration issues.

- The small scale of the projects raises the question of

validity in extrapolating conclusions directly to large

scale software development projects.

D. APPLICATION

The major value of the NPS experiment is the high quality

of error data obtained in terms of detailed error type defini-

tion and careful recording procedures. Reported results pro-

vide an important corroboration of McCabe's work, strongly
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TABLE IV

NPS EXPERIMENT

Correlation Coefficients
(Error Properties vs. Complexity Measures)

Number of
Number of Errors Found vs. Procedures

Cyclomatic Number .78 31

Number of Source Statements .59 31

Number of Paths .76 20

Reachability .77 20

Average Reachability .78

Labor Time (Man-Mins) to Find Error vs.

Cyclomatic Number .67 31

Number of Source Statements .59 31

Number of Paths .90 20

Reachability .90 20

Average Reachability .87 20

Labor Time (Man-Mins) to Correct Erro vs.

Cyclomatic Number .72 31

Number of Source Statements .51 31

Number of Paths .65 20

Reachability .66 20

Average Reachability .71 20

67



TABLE V

NPS EXPERIMENT

Complexity Measure Comparison
(Procedures with no Errors vs. Procedures with Errors)

L No Errors Errors

Mean Number of Mean Number of
Value Procedures Value Procedures

Cyclomatic Number 1.699 83 4.74 31

Number of Source 9.361 83 27.23 31
Statements

Number of Paths 2.671 82 27.1 20

Reachability 10.1 82 120.3 20
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indicating that "it would be worthwhile to use complexity

measures as a program design control to discourage complex

programs and as a guide for allocating testing resources."

[69
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V. THE ROLE OF COMPLEXITY IN RESOURCE ESTIMATION

AND ALLOCATION

A. GENERAL

It can be argued that blame for the historically inaccu-

rate cost predictions indicated in Chapter I can be attributed

to poor estimation techniques as well as to the management

control issues emphasized in Chapter II. Widespread acknowl

*edgement of this failing is reflected by the impressive

extent of research and experimentation in the past decade

directed to improve the largely judgmental state of the art

that persists in software cost estimation. This chapter will

briefly cover certain problems and approaches involved in

the estimation process, describe and offer an evaluation of

one existing model (Putnam) and suggest an application of the

cyclomatic number complexity metric to resource estimation

and allocation.

B. ISSUES IN SOFTWARE RESOURCE ESTIMATION

1. New Dynamic Field

Wolverton [11] observes that "the software industry

is young, growing, and marked by rapid changes in technology

and application. It is not surprising then, that the ability

to estimate costs is still relatively undeveloped." Beyond

the significant number of evolutionary improvements to the

programming profession wrought by its practitioners, the

direction of the software development process has largely been
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driven by the frantic rate of new developments in computer

hardware which were generally not aimed at rectifying software

difficulties. This dynamic, disjointed environment of change

*has prevented the development of mature cost estimation

techniques.

2. Quality and Testing

One important manifestation of the changing nature of

4 isoftware development is the growing emphasis toward testing

to assure quality. As quality becomes more an issue in system

design, the proportionate amount of time spent in each phase

of the development cycle will change, thus invalidating past

project guidelines and making estimation more difficult. (541

*, 3. Programming Units of Measure

Wolverton [55] cites the unreliability of available

units of measure used to gauge programming quality and produc-

tivity as one of the most difficult impediments to accurate

software cost estimation (as well as software management).

His list of measures which can produce false indications in

certain circumstances includes the following:

- Lines of code written pe= programmer month.

- Man months of effort per k lines of code.

- Defects per k lines of code.

- Man months of effort per k bytes of code.

- Object instructions measurements.

- Man hours per instruction.

- Cost per defect.

- Defect removal per k lines of code.

71



- Defects processed per man month.

- Machine hours and terminal hours used per

programmer month.

- Machine hours and terminal hours per k lines of code.

- Cost per page of documentation.

4. Fragmented and Proprietary Research

While the academic orientation of the programming pro-

fession has encouraged and supported publication of much of

the detail pertaining to newly devised estimation procedures,

actual large scale projects are almost totally accomplished

by individual firms in a competitive industry. Protective

policies and the mechanics of responding to requests for

proposals have placed much empirical data from specific pro-

* jects in a proprietary category. Thus the important experi-

mental data from individual project failures and successes in

different firms has not been comprehensively assimilated.

5. Individual Resource Costs

a. Labor

The labor factor of software development cost is

highly dependent on programmer productivity. Unfortunately

for estimation efforts, individual variances in productivity

are extreme and difficult to predict. As an example, Ogdin

(quoted in 56) cites a study involving twelve experienced

programmers who accomplished the identical programming task

with the following produc ivity variances:

-25:1 in coding time

-26:1 in debug time
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-11:1 in CPU time

-13:1 in execution speed

- 5:1 in number of lines coded.

The existence of these wide performance variances causes such

difficulty in conducting controlled experiments regarding the

utility of programming languages, tools and techniques that

productivity fluctuations often shield the influence of the

factor under investigation. Productivity rates of a specific

individual or group in a particular internal environment must

be appropriately assessed if cost estimates are to be accurate.

b. Elapsed Time

The amount of calendar time available for a soft-

ware development project has a significant impact on costs.

A useful cost estimate must provide guidelines for the allo-

cation of resources over the total predicted elapsed time to

accomplish the following:

- Coordinate time-phased funding.

- Account for costs that are time dependent.

- Assign resources for all explicit and implied

tasks resulting from the work unit breakdown.

- Manage the project within budget constraints.

It is apparently critical that management appreciate the

time requirements of a prospective project early in the

estimation/bid process. While schedules are normally speci-

fied in development contracts, development organizations must

approach original acceptance of contract schedules or later
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schedule changes with the utmost caution and a thorough risk

analysis. [57] As Brooks points out:

"The number of months of a project depends upon its
sequential constraints. The maximum number of men
depends upon the number of independent subtasks.
From these two quantities one can derive schedules
using few men and more months. (The only risk is

• product obsolescence.) one cannot, however, get
workable schedules using more men and fewer months.

More software projects have gone awry for lack of
calendar time than for all other causes combined." [15]

c. CPU Time

In the past, a difficult management issue to resolve

SI was the appropriate trade-off to be made between slack compu-

ter time and slack programmer time. In one case, if computer

time was so scarce that programmers could not be guaranteed

I access to a machine, progress was held up and schedules

degraded. Alternately, if computer time was easily available

with few effective constraints, programmers tended to attempt

much of their analysis, design and debug work on the machine

when another environment might have been more suitable and

efficient. [57] With the current availability of interactive

terminals and sophisticated software test tools, coupled with

the high cost of programming labor, management's role appears

to have been altered to one of ensuring availability of

appropriate tools and work environment to maximize productivity.

6. Lack of Sufficient Software Engineering Data Base

Boehm [58] explains the difficulty involved with ana-

lyzing software problems thoroughly as follows:

"One of the reasons progress has been so slow is that
it's just plain difficult to collect good software
data... These difficulties include:
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- Deciding which of the thousands of possibilities

to measure.

- Establishing standard definitions for "error,"

"test phase," etc.

- Establishing development performance criteria.

- Assessing subjective inputs such as "degree of

difficulty." "programmer expertise," etc.

- Assessing the occurrence of post facto data.

- Reconciling the sets of data collected in

differently defined categories.

7. Continuous Project Change

An individual engaged in cost estimation must live

with the fact that the program being estimated is never the

program actually developed. Changes may occur as the result

of the user finally discovering what he really wants, the

developer finally owning up to his inability to solve the

technical problem or an unforeseen change in the environment.

Whatever the reason, the change process has been observed so

frequently that Lehman has pronounced its inevitability as

his "First Law in Large-Program Evolution."

"The Law of Continuing Change arises from the fact that
the world, in this case the computing environment, under-
goes continuing change; all programs are models of some
part, aspect or process of the world. They must therefore
be changed to keep pace with the needs of a changing
environment, or become progressively less relevant, less
useful and less cost effective." (59]

8. Documentation

Software documentation constitutes one of the largest

and most difficult to manage 'hidden' costs in software
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development. When it is contracted for and produced in quan-

tity, it is normally not adequately reviewed and rarely ful-

fills its functions. Alternately, when it is minimized as a

cost saving measure, both the customer and the developer

(not necessarily in equal proportions) suffer future costs in

reinventing solutions. Figure 7 (60] shows the theoretical

relationship of varying documentation costs to total project

costs with a hypothetical optimum documentation level. [61]

9. Ability to Transfer Existing Code

An important opportunity to save development costs

obviously exists when part of the programming has been accom-

plished previously. Cost estimates vary according to the

amount of project code that must be newly generated or can be

transferred or retrofitted from existing programs. However,

estimates involving transfer and retrofit of code are unique

problems which must take into account required interfaces and

design constraints required to make existing code fit.

Forcing existing code into a design may result in unwanted

complex structures. At some point a developer may find it

more cost effective to rewrite code than to transfer or retre-

fit it. This evaluation should be an output of the estimation

process. [57]

C. TYPES OF ESTIMATION

In this section the major approaches to estimation are

categorizedand briefly described. It should be noted that in

practice more than one approach is frequently used, either in

combination or as cross verification, while evaluating a single

project.
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1. Engineering Estimation [57] (Also Bottom-up [11],

Quantitative [56])

Engineering estimation is a generic term encompassing

any methodology that systematically considers and evaluates

all known, pertinent factors bearing on resource utilization.

Variations of this method constitute the most highly used

approach to software cost estimation. The basic procedure

concerns breaking down a project effort into discrete work

units (activities, tasks, etc.) and formulating separate esti-

mates for each unit. Identification of an appropriate work

breakdown structure is a critical step in this process.

Costs in each separate activity can be aggregated into three

cost centers--programmer productivity, computer time and elapsed

project time. Once the difficulty of defining work units is

resolved, the total number of work units is multiplied by a

cost per unit factor or a productivity factor derived from

estimates of software complexity and duration. Various soft-

ware development factors unique to the project in question are

often evaluated, reduced to a single weighting factor, and

used to modify the derived estimate. The entire procedure is

normally iterated several times during a project as more

detailed data progressively becomes available. Engineering

estimation is heavily reliant on the estimator's ability to

evaluate each software development project in its unique

internal development environment.
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"A basic disadvantage of the many versions of this
technique is the subjective assessment of the weighting
factor used to modify the derived estimate. Also
problematic is the previously determined cost per unit
factor because it is not always clear what that cost
includes (i.e., direct labor, direct labor plus over-
head) and the unit (i.e., machine instructions, source
statements) is often incomparable between projects." [56]

2. Parametric Relationships [57] (also ratio

estimating [11])

These relationships have concentrated on the program

design, coding and program testing phases. The most compre-

hensive work done in this area was a System Development Cor-

poration Study in the mid 1960's sponsored by the Air Force

Systems Command. This effort culminated in a massive regres-

sion analysis involving over 90 factors thought to be useful

in predicting resource utilization. [55, 621 Determining

which relationships are key to an individual project is the

major operational problem with this approach.

3. Analogous Estimates [561 (also similarities and

differences [11])

An initial task breakdown is accomplished to a level

compatible with similar items in prior systems. Analogies

are then drawn to known historic costs with adjustments made

to account for technical differences. This method is heavily

dependent upon the existence of an accurate, updated data

base and/or upon the cost estimator's ability to recall rele-

vant material and make proper analogies and adjustments. The

analogy technique has been criticized for both the lack of a

valid data base of historical performance, cost and schedule
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data, and for the non-linear relationship between system

costs and system size which confuses analogous comparisons.

4. Top-Down Estimation (11]

Wolverton [111 describes this approach as follows:

"The estimator relies on the total cost of the
large portions of previous projects that have been
completed to estimate the cost of all or large portions
of the project to be estimated. History coupled with
informed opinion (or intuition) is used to allocate
costs between packages."

Like analogous estimates, top-down estimating has been criti-

cized for its dependence on data bases and the subjective

skills of the estimator. [56]

5. Rules of Thumb

Many developed cost models have been reduced to rules

of thumb for quick evaluations and checks against other

estimates. Such rules can be quite useful if they are not

relied upon solely. Table VI [57] summarizes a number of

these rules.

6. The Putnam Model

a. Summary of Approach

An interesting approach to the software sizing and

estimation problem was developed by Putnam [16] in his work

with budgetary data from the U. S. Army Computer System

Command. His effort is an extension of research by Norden

[18] who found that man-loading for research and development

projects can be linked to a project profile. Figure 8 [70]

depicts individual manning phases tied to cycles underlying a

summing "Project Profile" curve. Putnam represents Norden's
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model with the Rayleigh manpower equation which has been

empirically determined to fit the project curve. The two

important forms include both

- the derivative:

Y= 2 Kate
- at2

where Y' = man years of effort per year

K - total man years expended to
develop system

a = "problem solving rate" parameter
which determines curve shape

t = elapsed time in years

and the integral:

-at 2
K =K( - e

where Y = cumulative man-years over time t

Figure 9 [70] shows this Putnam-Rayleigh Model in both useful

curve forms. Putnam further identifies the value

K / t2

where td is the time to reach peak effort, as an indicator

of the difficulty of a system in terms of the programming

effort to produce it. To complete the cost prediction pro-

cess, estimates of the two parameters of Putnam's model, K

(the total life cycle man-years), and td (the time for the

derivative curve to reach a maximum), are used to derive an

equation giving the ordinates of the manpower requirement

curve for a specific project. Yearly cost figures are then

computed for the project by multiplying the ordinates of the
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manpower curve at each year by the average cost/man-year to

arrive at a cost/year. These rates are then summed to find

the cumulative cost. [56]

b. Management Implications According to Putnam [70]

(1) Life Cycle Size (K), Development Time (td)
and difficulty (K/t2 ) are natural parameters of a system.

(/d)

Each system is inherently stable and will be driven toward

Sj these parameters which constitute the minimum cost solution

to the software design problem.

(2) Management cannot cut the development time

of a project without increasing difficulty. All changes

are biased to the negative direction. Development time

cannot be arbitrarily set.

(3) If K, td and K/t2 are accurately determined,

a system can be designed-to-cost with little uncertainty.

c. Evaluation of the Putnam Model

Putnam has pointed out an impressive number of

past projects conforming to his calculations. (16] If K

and td can be confidently derived, the effort required to

complete the estimation is minimal since the process can be

easily automated. The breakdown of costs by time is an

especially significant management aid.

General criticisms of the Putnam model include

the following:

- Total reliance on man-years as a measure of

work, thereby ignoring type of work. [57]
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- Estimates of non manpower costs (e.g., computer

time and overhead) inadequately addressed. [57]

- Accurate determination of K and td from historic

data can be time consuming if such data is not

easily available or in a usable form. [57]

- No conclusive data has been published concerning

projects utilizing the Putnam Model as a major

planning tool.

- No economic theory has been adequately presented

to support Rayleigh curve fit for cost curves.

-Ease of automation may seduce weak managers

to use inappropriately.

D. APPLYING THE CYCLOMATIC NUMBER

1. Utility

Many of the issues covered previously regarding soft-

ware development and resource estimation suggest the import-

ance of ordered program structures to both software quality

and costs. If a method of measuring and controlling complex-

ity in program structures is available, management will be

* able to accomplish the following [1]:

- Avoid error prone structures.

- Cut costs involved in extensive test and debug.

- Decrease time (and related costs) associated

with extended development cycles.

- Assist in developing more standard modules.
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- Facilitate resource estimation by increasing

standardization and decreasing variance in

programming productivity.

- More efficiently allocate resources by fitting

manpower and schedule planning to complexity

patterns.

The original work by McCabe (50] and supporting work by

Schneidewind [11 indicate that the cyclomatic number offers

a tool to effectively limit complexity. Its advantages

include the following:

- Easy to understand and calculate.

- Requires information that can be developed

during estimation process.

- Provides a finite number which can be used

for planning.

- Facilitates formulation of appropriate test

strategy, test input data and allocation of

testing resource by

- identifying independent substructures and

- identifying heavily used logic paths.

2. Setting a Design Threshold

The particular upper bound to be set for the cyclo-

matic number is somewhat arbitrary and can probably be varied

slightly from project to project. McCabe [35] suggests 10

as a reasonable upper limit. Since he found a variance among

programmers from the 3 to 7 range to the 40 to 50 range, the

imposition of such a limit would obviously radically alter

89



the approach of many programmers and would necessitate an

introductory training period. The Lmportant point in imple-

menting a cyclomatic number constraint is the ability of

management to articulate the policy fully to programmers and

enforce it by insisting that structures in violation be

either modularized or redone.

3. Test Strategy and Resource Allocation

Even with an effective threshold, structures will

naturally vary in complexity. In formulating the test proce-

dure, more personnel, computer time and schedule time can be

assigned to the structures with higher cyclomatic numbers in

order to better allocate resources. Additionally, the direc-

ted graph analysis highlights portions of the software that

are most heavily utilized in the logic flow and where program

errors would be most damaginq. Test input data can be selec-

ted to concentrate on these structures within the time con-

straints of the testing phase.
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VI. SUMMARY AND CONCLUSIONS

- For various reasons relating to its nature and historic

evolution, the process of large scale software development

has been plagued by an inability of management to assess and

1control software complexity. Improving this ability will be

a key factor in future project cost estimates, resource allo-

cations, cumulative costs and software quality.

- In light of historic trends, the greatest potential for

resource savings exists in the analysis/design and the test/

integration phases of software development. Certain automated

management tools have shown promise in these areas, but more

experiential data is needed.

- As recognition of the importance of complexity has grown,

a number of theorists and researchers have proposed methods

of describing, estimating and measuring the extent of complex-

ity's influence in individual programs.

- Perhaps because of the multifaceted nature of complexity,

none of the proposed approaches has been shown to be suffici-

ent in all cases. This fact may indicate the need for a

"complexity profile," i.e., a comprehensive evaluation using

more than one metric.

- An argument has been presented in support of the cyclo-

matic number (from McCabe's Directed Graph application to

modeling software) as a useful tool for control of complexity

and the allocation of resources.
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